If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=-16t^2+2113
We move all terms to the left:
0-(-16t^2+2113)=0
We add all the numbers together, and all the variables
-(-16t^2+2113)=0
We get rid of parentheses
16t^2-2113=0
a = 16; b = 0; c = -2113;
Δ = b2-4ac
Δ = 02-4·16·(-2113)
Δ = 135232
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{135232}=\sqrt{64*2113}=\sqrt{64}*\sqrt{2113}=8\sqrt{2113}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{2113}}{2*16}=\frac{0-8\sqrt{2113}}{32} =-\frac{8\sqrt{2113}}{32} =-\frac{\sqrt{2113}}{4} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{2113}}{2*16}=\frac{0+8\sqrt{2113}}{32} =\frac{8\sqrt{2113}}{32} =\frac{\sqrt{2113}}{4} $
| 56÷x=8x= | | z/–2+12=16 | | -3m+5=20 | | 5(a-7)=44 | | 2y-19=15 | | n+1.4=0,72 | | -6b-2=40 | | 4(3x=8)=-38+34 | | 2b+8−5b+3=-13+8b−5−4 | | t+80/7 = 1 | | –4=–10+2b | | -1=a/2+(-6) | | 0=-16t^2+2716 | | c2 + 8 = 10 | | (4-x)^-3=64 | | 12.y+y=91 | | 20-d/5=24 | | 2x+5=x+1=7x-16 | | 4(6m-5)=-68 | | 3/4=7−x | | P(Za)=0.7019 | | 2716=-16t^2 | | 6x+8=24-x | | 3x4=7−x | | 12x+14-4x=6+10x-18 | | -2x+13=4x-5, | | w(w-5)=6 | | 3(2+v)=5(v+16) | | 1.2-0.3v=-1.4 | | 2x-5=147x=14x=2 | | x=7.5-2.75 | | 75/25=x/12 |